Deep Knowledge and Domain Models

نویسنده

  • Jarmo J. Ahonen
چکیده

An approach to the concept of deep knowledge is outlined. The approach is based on the assumption that the deepness of knowledge results from its explanatory powers. After considering some examples of deep and shallow knowledge and deening deep knowledge and robustness, an approach to the development of quantitative domain models based on deep knowledge is proposed. The proposed approach is based on the Salmonian concept of causal processes and it provides a uniform point of view to knowledge of physical domains and domain modeling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

An Acquisition Model of Deep Textual Semantics Based on Human Reading Cognitive Process

The acquisition of deep textual semantics is a key issue which significantly improves the performances of elearning, web search and web knowledge services, etc. Though many models have been developed to acquire textual semantics, the acquisition of deep textual semantics is still a challenge issue. Herein, an acquisition model of deep textual semantics is developed to enhance the capability of ...

متن کامل

NITE: A Neural Inductive Teaching Framework for Domain Specific NER

In domain-specific NER, due to insufficient labeled training data, deep models usually fail to behave normally. In this paper, we proposed a novel Neural Inductive TEaching framework (NITE) to transfer knowledge from existing domain-specific NER models into an arbitrary deep neural network in a teacher-student training manner. NITE is a general framework that builds upon transfer learning and m...

متن کامل

Identification of mineralization features and deep geochemical anomalies using a new FT-PCA approach

The analysis of geochemical data in frequency domain, as indicated in this research study, can provide new exploratory informationthat may not be exposed in spatial domain. To identify deep geochemical anomalies, sulfide zone and geochemical noises in Dalli Cu–Au porphyry deposit, a new approach based on coupling Fourier transform (FT) and principal component analysis (PCA) has beenused. The re...

متن کامل

Towards Zero-Shot Frame Semantic Parsing for Domain Scaling

State-of-the-art slot filling models for goal-oriented human/machine conversational language understanding systems rely on deep learning methods. While multi-task training of such models alleviates the need for large in-domain annotated datasets, bootstrapping a semantic parsing model for a new domain using only the semantic frame, such as the back-end API or knowledge graph schema, is still on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Informatica (Slovenia)

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1995